Partial Optimality of Dual Decomposition for MAP Inference in Pairwise MRFs
نویسندگان
چکیده
Markov random fields (MRFs) are a powerful tool for modelling statistical dependencies for a set of random variables using a graphical representation. An important computational problem related to MRFs, called maximum a posteriori (MAP) inference, is finding a joint variable assignment with the maximal probability. It is well known that the two popular optimisation techniques for this task, linear programming (LP) relaxation and dual decomposition (DD), have a strong connection both providing an optimal solution to the MAP problem when a corresponding LP relaxation is tight. However, less is known about their relationship in the opposite and more realistic case. In this paper, we explain how the fully integral assignments obtained via DD partially agree with the optimal fractional assignments via LP relaxation when the latter is not tight. In particular, for binary pairwise MRFs the corresponding result suggests that both methods share the partial optimality property of their solutions.
منابع مشابه
On MAP Inference by MWSS on Perfect Graphs
Finding the most likely (MAP) configuration of a Markov random field (MRF) is NP-hard in general. A promising, recent technique is to reduce the problem to finding a maximum weight stable set (MWSS) on a derived weighted graph, which if perfect, allows inference in polynomial time. We derive new results for this approach, including a general decomposition theorem for MRFs of any order and numbe...
متن کاملA Fast and Exact Energy Minimization Algorithm for Cycle MRFs
The presence of cycles gives rise to the difficulty in performing inference for MRFs. Handling cycles efficiently would greatly enhance our ability to tackle general MRFs. In particular, for dual decomposition of energy minimization (MAP inference), using cycle subproblems leads to a much tighter relaxation than using trees, but solving the cycle subproblems turns out to be the bottleneck. In t...
متن کاملLifted Message Passing as Reparametrization of Graphical Models
Lifted inference approaches can considerably speed up probabilistic inference in Markov random fields (MRFs) with symmetries. Given evidence, they essentially form a lifted, i.e., reduced factor graph by grouping together indistinguishable variables and factors. Typically, however, lifted factor graphs are not amenable to offthe-shelf message passing (MP) approaches, and hence requires one to u...
متن کاملBethe Bounds and Approximating the Global Optimum
Inference in general Markov random fields (MRFs) is NP-hard, though identifying the maximum a posteriori (MAP) configuration of pairwise MRFs with submodular cost functions is efficiently solvable using graph cuts. Marginal inference, however, even for this restricted class, is in #P. We prove new formulations of derivatives of the Bethe free energy, provide bounds on the derivatives and bracke...
متن کاملContinuous Relaxation of MAP Inference: A Nonconvex Perspective
In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can be easily reached by a simple block coordinate descent algorithm. In addition, we study the resolution of this relaxation using popular gradient methods, and further propose a more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.03314 شماره
صفحات -
تاریخ انتشار 2017